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SUFFICIENT CONDITIONS OF FINITENESS OF THE PURSUIT TIME* 
B.N. PSHENICHNYI and N.B. SHISHKINA 

A new effective way of solving the problem of pursuit which includes the 
case of non-linear differential equations is proposed. The controlling 
action of the pursuer is designed according to the position of the game. 
Ideas previously published in /l-6/arc developed. 

1. The differential game is specified in Euclidean space p.Here UCA" and VCR" 

2' = f (t, 2, IL, v), z E P, u E u, v E v (1.1) 
are non-empty compacta, and the dot denotes differentiation with respect to time t. The vector 
function f is continuous over the set of variables that satisfy the Lipschitz condition with 
respect to z and can be represented in the form of the sum f (t,z, u,v) = fl(t,z,u)i- fP(t,z,v). The 
set fl (t,G V) is ,convex for any values of the variables t and z. The terminal set has the 
form M = M, + K, where Al, is a convex compactum in R",and K is a closed convex cone in I?'. 
The game is considered finished from the initial position f, z’, if at some instant of time 
t > to we have z (f) E Ill. 

Definition 1. Any measureable function v(i), t > to with values in V is called the 
strategy of the pursued in the game (1.1). 

Definition 2. Any upper semicontinuous multivalued mapping U(z) from R" into 2", where 
2" is the set of all subsets of compactum U, is called the pursuer's strategy. 

We say that the differential game (1.1) may be completed from a given initial position 
to, z”, if a strategy of the purs'uer u(z) exists such that for any strategy of the pursued 
c(i) the solution of the differential inclusion 

z' E f @, z, u (z), c (1)) 
reaches the set M in finite time. 

2. Let us introduce some notation and prove some ancilliary statements from the theory 
of convex analysis. 

We set for r : M 

D, = {z: z = t + p (m - I). y > 0, m E &J) 

For ZE D, we have the function 

?, (2) = mas {i. > 0: J + 1:’ (2 - x) E AJ) (2.1) 

By virtue of closure of I4 

m (z) = z -r k-1 (z) (z - .T) E fiJ} (2.2) 

Lemma 1. The functions %(z) and m (z) are directionally differentiable and satisfy the 
Lipschitz condition inside the region of definition. 

Proof. From the definition of the function i(z) we have 

I = t +),(I) (m (2) - z) (2.3) 

For any yI>/O. y2>0 such that yl+yl:= 1 and r,,+=D, the equation 

(2.4) 

holds. Because of the definition of the function L(z), the convexity of the set 14, and Eq. 
(2.4) , we have b(y,r,+y,z,) 3.2, i.e. that the function k(z) is concave on D,. From the concavity 
of A(Z) it follows that the properties defined by the lemma are valid for it /7/. This 
implies that similar properties hold for m(z). 

Consider the set 

where U'M($) is the support function of set M. Withthe assumptions made regarding the set M, 
the set N is closed, and the function wM($) is continuous on it. This enables us to define 
the function 
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we put 

and denote the coneconjugate to the cone K, by KS*. 

Lemma 2. The function F(z, A) is differentiable with respect to the direction z*, i.f, 
and 

Fr(6, h(3). z*, k*)= mat {-($, z*)-+ ?,*(*, m(z)--$2)) 

+=Jkl(Z) 
P' {z, h (Z)‘ 0. 1) > 0 

(2.5) 

Proof. The function P(L,?.) is known to be convex with respect to z and ii /0/. It is 
consequently differentiable, and its derivative with respect to the direction z*,1* is 
calculated by the formula ’ 

We know that m~,1f, if and only if (9, m)<WA,(V) for all +,+I!= 1. Hence, taking into 
account the definition of the functions F (2. 1) and 1(z). we obtain F (2. i. (2)) = 0, i.e. Ip f v (-, 
i. (2)) means that k (:I((*, m ($1 - W,,(*)i = 0 or (*. m - m (:)j < 0 'for all m E If. Thus, taking intc 
account the definition of the conjugate cone, we obtain -_tm Kz,(,,. Besides, since %i;.V, we 

have x (2. A (z)) = (-K' m(i)) r.;\-. The first part of the lemma is proved. 

Using the definition cf the directional derivative, we obtain 

F’ (z, Xi.); 0, I) = liw 
F (;. i. - f ] - F (:, i. (r)l 

I ->O 
i .o 

since F (a, 2. (-ii = 0. and F(z. i. (2~ +. fi > 0, i > 0. 
Note that, if the set I? has a smcoth bciindary, then by definition, the set KL,,,: B. 

where B is the unit sphere in fi".consists of the unique pcint T(m (2)) which is the inner 
unit normal to the surface continucusly dependent on that pcint. 

Lemma 3, Let the Set j.1 hicve 5 SmcGtt kJG'mda_Zy. Then in the region where the fcllowir,g 
inequalities are satisfied: 

8s (2) > 0, s (z) = (T (n! (2)). m (:) - l) (1.6) 

the f-xictlc:. i.(Z) I.5 f.iiferf,~, -'iable and its derivatil:e with respect tc the dlrection z* is 
determined h: the fcrrxla 

i.' (L. 9) = (T (m (;))- z*) s (z) (2.3 

Frooi. :n this case Eq.!2.5! takes the fcrrr 

F' (z. i.(z), z*, A') = -(T (m (zji, z'j + A*5 (zj (2.E: 

Since ?.(:I Is directicna1i.y differentiable, we have 

X (2 + 1;') = i. (:I + ti,' (L, 2') + a (rj 

Differentiating now the relation F(z+ lz*, i.;r%*)= 0,we obtain by virti;e cf i2.E) lemma 

(5.7). 
Lemma 4. For any point ;# I,E = I + h (mo-z) where m,Eint :bf (int A! is the intericr of 

M) the inequality (q, m(z)- z)>O. U*E ii:,,, f-j B is satisfied. 

Proof. Since m. E in! .V, hence m, - EY EE M for some e>O and any y, l,yl<l. besides, for 

t E h'?&) the inequality (3. n) &(Q',m (2)). Ym E M holds. Consequently, (\F. m)-- EtV. 9) Z(O, m W. 

Substituting intc this m,= t+h-'(L-Z), m (z) = I T i.-1 (2) (; - z), we obtain 

(i._' - x-1 (I)) (rl', z- t,>, E (II', Y) (2.9; 

Lt can be shown that i,(I(~t. Taking the maximum of the right side of (2.9) we find that 
its left side is net less than e/j$li>O. Hence (t, m(a)- x)= I(L)x(I&I - r)>O, which it was 

required to prove. 

Lemma 5. For any E>O the e-neighbourhood ofthe convex set M has a smooth boundary. 

Proof. Let I be the boundary pcint of the set M,. Then a vector q,ll%l;#O exists s'xh 

that (V. m-z!& 0 for any mm M. It is required to prove that the normal at that point is unique 
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and continuously dependent on the point 2. 
Let now M, = M + ES,. Where S, is the unit 

eE*#. Let us assume that 

sphere in R". It canbe shown that W,,(*)= h'~N9-t 

Now we have rn~ M,, if and only if F,(m)<O, and the boundary of M,is defined by the 
equation F,(z)=O, i.e. F,(m)<F,(z), merM,or (-_,m--1)>0. Thus, --tmKI* and li(I'II=i. 
Hence -$ is the normal to M, at the point t. 

Carrying out the calculations in reverse order, we find that if -0 is the unit normal 
at Z, then F,(X)= 0. 

Thus the set of normals to M, at the point z coincides with the set of those 5. taken 

with the negative sign, at which a maximum is reached in (2.10). But by virtue of the strict 
concavity of the function (J', z)-EiA,(V)- e)/Vj', the maximum of (2.10! is reached at a single point. 
This proves that M, has at each boundary point a unique normal T,(z). It is shown in /a/ that 
if the maximum in (2.10) is reached at a single point e(z), then (1'(z) depends continuously on 
I. Hence, T,(I)=-+(I) also depends continuously on =,which it was required to prove. 

Lemma 6. If the set N has a smooth boundary XE M and the point RAKE M is such that 

h(m,) = 1, then Tfn,)~ X,' fl B. 

Proof. Let the conditions of lemma be satisfied. Then ~+L-~(rn,-z)=M when %>I by 
virtue of the fact that A (mo)=l and the definition of the function A (n). Hence M and the set 

I=+? (mO - 1):0<~4l)do not intersect. This means that a vector 9, uQu=I exists such that 

(q, m)>(iJ‘,r+Y(m,-1)). ZEM. O<ydf 

Hence, when y=O, we obtain (q, m)>(tl; ri, i.e. \i‘ E K,*. On the other hand, we obtain it, m)> 
(*,mo) as p-i, i.e. \i.~f;c+. Since iFI has a smooth boundary and [*I== i, we have \I= T (me). 

3. The answer to the question of whether it is possible to terminate the pursuit in a 
finite time is given by the following theorem. 

Theorem 1. Let the terminal set M have.a non-empty interior and a smooth boundary; a point 
rn,~ ink V and a number p>O exist such that for the point z = zi +p(.z"- nl,,) and its 
corresponding f-unction k(t) (2.1) for any z that satisfies the condition 1 >?.((z)~k((z') and 
t > to 

mi; z:[x (T(m(z)). j(t> z, u, u)l> 62 0 (3.1) 

(the function m(z) is defined in (2.2)). 
Then the differentia' A game (1.1) beginning at instant to at the point z" can be completed. 

Proof. it can be see that ?. (131 (2)) = 1. Indeed, by the dafiniticn of i.(z), we have 
nz (r) E ,\I and consequently 

f- f (m(z) - f) = m(:) f .li 

-.e. ). (m (2)) 2 1. but if i. (ill (:)I > I. i.e. 

z-1 $(W-t, =m~.lf,y>l 

then ?n (2) = I + 1~ (m - ri and, substituting this exPression intc 12.21, we obtain 

m=r,-l(;--X) 
YA (:I 

This means that i>I'r which ccntradicts the assumption. 

Furthermore, since nzo=z- T(?-z), hence k(z')> &>O, besides, since m,t= int dJ, 

hence according to Lemma 4 we have s(z)> 0 ((Z?(z) is defined in (2.6)). Let us now design 
the strategy of the pursuer. We assume for all z such that h(z")<h(s)( 1 

Li (2) = {u E U : (T (m ML II 0. z, 411 = zz; (T (m W, II 0, 2, u)) 

Since m(z) depends continuously on z, and T(m) is also a continuous function, the set 
C'(Z) depends semicontinuously from above on z in the region where condition (2.6) is satisfied 
/a/. The last condition is necessary , since according to Lemma 3 only in that region is the 
function h(z) continuously differentiable, and the vanishing of the left side of (2.6) indicates 
that the boundary of the region of definition of the function h(z) is reached. 

Thus, in the region where condition (2.6) is satisfied the differential inclusion 
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is defined, 
Let us 

corresponds 

Z’E f (t, 2, u (z), v (t)), t I;; to, 2 (P) = z” (3.2) 

and it has solutions that can be continued fairly far. 
consider some of these, for instance 2 (0. According to /9/ the control u PI 
to ii and is a measurable function with values in U(z(t))e u, such that 

z’ = f (4 z, u U), v (0) (3.3) 

Since the function h(z) inside the region defined by (2.6) is continuously differentiable, 
by Lemma 3 

&" (2 (t))ldt = h' (z, 2' (t)) = (T (m (z)), I @,Z, 24 (t), v(t)))lS (z) 

Taking into account the conditions of the theorem and the fact that II(~) E i?(z(t)), we 
obtain the inequality 

dh (2 (t))!dt > 6 / s (2) (3.4) 

which implies that the function h(z) increases monotonically along the trajectory z (t). 
Consider the quantity S(z). By definition, T(m (2)) for any point rnE M 

fT (m (z)), m) 2 (T (m (z)), m (4) = (T (m (z)), f) + S (4 

Since T (m(z)) is a vector of unit length 
S(z) has an upper limit. Consequently ?. (z (t)) 
provided that at some instant S(z) it does not 
continue the trajectory. 

It can be shown that this cannot occur. 
bet us assume the contrary, i.e. when t 1 

and the points m and z are fixed, the quantity 
increases at a non-zero rate and reaches unity, 
vanish in (3.4) and it is not possible to 

t,, f (1) - z* 

=R (3.5! 

The function F(:,k) is convex and at the point 2, according to (2.8) X(n,l its derivatives 
with respect to z and 1 are - (?'(m (-,I), z,i and s (z), respectively, By virtue of the convexity 
we have 

F (2 (I). A (: (Z!I > F (z+. ;: (t.il - (T (m (2,)), ; (1) - z.) + (i. (2 (1)) - A rz,)j S (2,) 

Taking into account (3.5' and the fact that F‘jz,,R[:+\)= 0. we obtain 

(T (m k,)i, I* - 2 f!)) < 0 

It follows from (3.3) that 

;*-:(I)= f:dT, I = I(T‘, L (7). u (I), C’(T)) 
I 

Hence 

t* t* I* 
O>, f (2' ~~~~ (:*f). :)dr = \ (7 (m fr (T)), 11 di i f (T (m {:*I\- 7’ (m (zcrl), Il)dr 

0 i ; 

Cwing to the continucus dependence of 7 (m\ on m, the last terms ii? the derive2 formla 
will be 0 (f* - ti. On the otier hand, by virtue cf U(I)= 6(;(r)), the selection of C(:), and the 
assumptions of the theorem, the integrand in the penultimate term is greater than 6. Thus 
6 it* - f) + 0 (L* - t) f 0, 2 1 1, which is impossible when t is fairly close to t,. 

Hence in Eq.i3.4: the quantity S(z) has an upper limit and is always non-zero. Hence 
the quantity i-@(l)) increases with time and reduces to unity at a certain finite instant of 
time. But the condition ;i(z (f)) = i is equivalent to the fact that z(f) = m(z(t))~ hf. 

The game 1s conplete8 an5 so is the proof cf the theorem. 
The corollary cf the theoremis the following Theorem 2, generalizing the reslults obtained 

in /l-3/. 

Theorem 2. Let 14 be a convex set, f(t, z, u, v) = f ft* rr,c). If the equation 

P @ - 2';) = f (i. II. r). 't'v f I', Yt > to (3.6) 

has a solution m E :II,uE L’ and p>&>o, the game (1.1) commencing at the instant f' from 
the point z0 can be terminated on the terminal set fife (M, is the e-neighbourhood of the set 
M, and s is an arbitrarily Small poSitiVe number). 

Proof. Let E> 0 and the quantities m, E Jf,u,E u and p* >p* be selected according 
to Eq.(3,6) for given f> t" and VE li. We assume f = z"+ v(z*-rnrn,) where m, is an arbitrary 
point of M. 

It can be shown that for fairly small ip>O and S>O the point f(t,tr,,v) together 

with the &neighbourhood belongs to the cone 

K =, C = {I’ (m + EY - 4: y > 0, m E M, II id II < 1) = con {fife - 2) 

For this it is sufficient to show that the equation 



y (m + ey - ZQ - cp w - mJ)) = f (h U.3 u) + 6Ul 
is solvable. Setting y = p*, m = m, and taking (3.6) into account, we obtain 
p*& (no - m,) or 

If we select 

then 

6 
u=p*tu1+ t 2 (10 - mo) 

c 1 
cp = 2(r"-mm,fl ’ 6 =Tp*? 

Thus the equation obtained is actually solvable, and for any Y~ES we have I(1 , 4, 4 + 
bt = R,, 8 

Then for $,E~,,Ilell=i 

($7 f (1, a*, C)) > - 6 ($9 YA II Y, II Q 1 

Taking the maximum of the left and right sides with respect to UE u and YIE s* 1 
respectively, we obtain 

Taking as the terminal set .If,.we new apply Theorem 2. It is obvious that intM,# a, 
and point rno~.&f which was used to construct the point r, belon s to int M,. 

9 
Furthermore, 

by Lemma 5, the surface .V,is smooth, and by Lemma 6 T(m(z))~ K=,,. Hence by virtue of (3.7). 
we have 

mas (T (tn (2)). ! (t, u. c)) > d > 0 
"EL 

Thus, all conditions of Theorem 1 are satisfied, and the pursuit can be consequently 
completed ater a finite time. 

Remarks. lo. Theorem 2 can be similarly proved when the function f also depends on the 
position of 2. 

2O. These results can easily be transferred to the case of several pursuers. 

Example 1 (simple purs.At! . The mcticn of the object is given by the differential equation 

I' = U - V; 1: u/j < CI. 1; ~.lj < fi, a > 0, fi > 0, I E R' 

The terminal set has the fcrm .lf=(r.~R~::'r~<~). 
kt us explain what form conditicn (3. 1' will have in this problem. We have 

min max (T (m (z)), I((, I, U, I,))= min ma‘; (r(m(:k), u - c.)i 
bwze wa iwse twc 

max (T (m I4), ~1 + ,,;$ (r (m (-H, - CL 
IP!!ca 

The inner unit normals ateach bc.undar,, pcint m of the set I.1 are obviously equal to -m'~. 
Consequently 

and condition (3.1) takes the fcrm a- b>O. 
We assume the point m. coincides with the origin of coordinates, and the controls of the 

parsuer at each realized position cf the game are selected to be equal to the vector -HOE-1, 
where m(z) = =+A(:)(:--1, I = (IT pl;', : is the current position of the game, and h(2) is a 
function constructed by the method indicated above. 

Example 2. The differential game is specified by the equation 

2' = az + 0 - c, I! U: < T, /I 1'1.s S, r > 0, s > 0, a > 0, I E R? 
M = (I E R* : /jr I,< E} 

In this problem condition (3.1) has the form 

(I (m (z)), 2) > (8 - +a (3.8) 

We shall show that when the inequality 

r-S>>S (3.9) 

is satisfied, condition (3.8) holds for all z such that 1 > ). (z) > h (2'). 
Let us set no = (0, 0). Then we have z = (1 +p)?, T(m (z)) = --m(t)!~ as in the first example. 
Starting with (3.91, we write 
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Consequently 

Using the inequality (m (2). I) Q 11 m (t) I/III II= e ]Iz~, we have 

l--m (2)/e, 2 + t (2) (m (I) -r)) > (s - r)/a 

Using Eq.(2.3) we obtain the required condition c3.8). 
The game can, thus be completed from the initial position z” in a finite 

parameters are connected by relation (3.9). The controls of the pursuers are 
time, if its 
const .ructed as 

in the preceding example. 
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OPTIMAL CONTROL WITtI A FUNCTIONAL AVERAGED ALONG THE TRAJECTORY* 

74.1. PA:&SYZ and V.I. PANASYUK 

A set Of infinite cptimal trajcctcries (IOT) is defined. It is shown that 
in an arbitrary fixed time interval any optimal trajectory of a system for 
a problem. vith fairly large control time (and arbitrary initial conditions: 
can be uniformly app roximated tc some IOT with the desired acc.Jracy. 
Sufficient ccsditicns are presented which ensure the existence of IGT, and 
the structure of the ICT set is investigated, using the rearrangement 
operator. The set of main trajectories is defined, and the correctness 
of that definition is proved, A chain of approximations is obtained: 
IO? approximate optimal trajectcries of finite length, and the main 
trajectories apprcximate t!he IOT. 

The properties cf optical trajectories of considerable length, and of IOT and main 
trajectories ara investigated by solving thle problem of optimal control, with a functional 
averaged along the trajectcry. It is shown that a limit time-averaged value of the quality 
functional on optimal trajectories cf the problems in a finite interval, when its duration 
increases withcut limit, does exist, is independent of the selection of the initial and 
finite conditions of these problems, and is equal to its value on any IOT. For a problem cf 
"optimum in the mean" ccntrcl the exact lower bound of the functional averaged over time does 
not change, if one limits the consideration oniy to periodic modes of the system with all 
possible periods. Tne paper continues investigations carried out in /l-4/. A somewhat 
different aspect of tk,e prOtiler;: cf the asymptotic forms of the optimal trajectories of a 
control system was studied in 15, 6/, ard a number of similar problems was investigated in 
/7-ll/etc. Generalizations to problems with discrete times were considered in /12, 13/. 

1. Formulation of the problem. The following problem of optimal control is 

considered: 
$+r(z, u), uEUCRr; XEXCFP (1.1) 


